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Abstract

A straightforward accurate technique is presented for calculating natural frequencies for axisymmetric vibration of

cylinders of any aspect ratio. The Ritz variational method is applied by using algebraic polynomials in the form of power

series in the axial and radial coordinates. The adequate choice of the maximum exponents for each coordinate is important

factor in order to achieve better accuracy, compatible with an admissible time of calculation. A computational model is

developed that provides the optimum selection of exponents by following an automatic iterative process. This leads to a

precise calculation of frequencies in a minimum time of calculation. The method is tested by comparing numerical and

experimental results and a good agreement is obtained. The common hypothesis on the number of terms in the radial and

axial coordinates is not sufficiently justified, as is proved.

r 2007 Elsevier Ltd. All rights reserved.
1. Introduction

The study of the propagation of waves in cylinders, based on the classic theory of elasticity, is well known
[1,2]. An analytical solution of the equations of motion that satisfies the boundary conditions is generally
impossible to obtain for a finite cylinder. Thus, approximate solutions are sought. Appropriate solutions lead
to stationary waves.

Several researchers have carried out three-dimensional analysis based on the equations of elasticity in order
to find accurate natural frequencies for the vibrations of solid elastic cylinders. The work of Hutchinson [3,4] is
particularly notable. He proposed a Bessel series solution of the general three-dimensional equations of linear
elasticity; three of the six boundary conditions are exactly satisfied, the remaining three conditions are
approximated. This method has been extended [5] to determine the vibration response of cylinders to arbitrary
distribution of axisymmetric symmetric excitation on its surface.

The Ritz method is a widely used procedure for finding solutions for stationary vibrations. Rumermann and
Raynor [6] expressed the components of displacement as series of the corresponding pure radial and axial
modes of the infinite cylinder. Heyliger [7] used power series in the axial and radial coordinates as the
ee front matter r 2007 Elsevier Ltd. All rights reserved.
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approximation functions. The work of Leissa and So [8,9] in the study of finite cylinders with different
boundary conditions deserves special mention; the displacement functions chosen are in the form of algebraic
polynomials in the cylindrical coordinates. Liew et al. [10] studied free vibrations of elastic solid cylinders of
polygonal cross-section, sets of one and two-dimensional orthogonal polynomials are constructed to represent
the displacement components in the longitudinal and lateral surface directions.

When considering only axisymmetric modes of a vibrating cylinder, the azimuthal variable y does not
appear and, in addition, the displacements have only two non-null components; radial u and axial w. The
torsional axisymmetric vibrations are therefore excluded. This study is focused on the free vibrations of a
cylinder, i.e. ends and lateral surfaces are free and there are no bulk forces. By using non-dimensional
coordinates: r, the radial coordinate divided by the radius of the cylinder; and z, the axial coordinate divided
by its length, the supposed displacements in the cylinder become:

uðr; y; z; tÞ ¼ Uðr; zÞ sinðotÞ,

wðr; y; z; tÞ ¼W ðr; zÞ sinðotÞ. ð1Þ

In the Ritz method approximate solutions are assumed which satisfy the boundary conditions. The series used
here for the radial and longitudinal displacements are algebraic polynomials of the form

Uðr; zÞ ¼
XI

i¼1

XJ

j¼0

Aijr
izj and W ðr; zÞ ¼

XP

p¼0

XQ

q¼0

Cpqrpzq. (2)

Convergence towards the ‘‘true’’ frequencies and mode shapes is obtained as the number of terms in the
approximating expressions is increased.

For simplicity of formulation, the non-dimensional frequency

O ¼ pf Dðr=GÞ1=2 (3)

is used, where f is the ordinary frequency measured in Hertz, D the diameter, r the density, and G the shear
modulus.

Hamilton’s principle for harmonic motion leads to the condition of minimization for the difference between
maximum kinetic Tmax and maximum potential Vmax energies, which are expressed and calculated in terms of
U and W. The difference Tmax�Vmax can be expressed [11] as a function of aspect ratio L/D, Poisson’s ratio n,
and O. Since the condition of minimum relates such quantities, axisymmetric non-dimensional natural
frequencies depend on n and L/D, i.e., O ¼ O (n,L/D). The minimizing conditions imply that q(Tmax�Vmax)/
qAij ¼ 0 and q(Tmax�Vmax)/qCpq ¼ 0. The compatibility condition for this set of equations gives the
admissible values for O 2. For each eigenvalue O 2, the set of linear equations supply the eigenvectors whose
components are the unknown quantities Aij and Cpq. A Maple program is developed to compute the
eigenvalues and eigenvectors. The algebraic system of n equations is solved, and therefore n non-dimensional
frequencies are obtained which correspond to the n eigenvalues of the system. The value of n equals the
number of monomials in the displacement functions.

A mode of vibration is called symmetric mode if j takes even values (zero included) and q odd values.
A mode is called antisymmetric if j takes odd values and q even values (zero included). The separation of the
problem into symmetric and antisymmetric modes has at least three advantages: (1) the size of the matrices
decreases, (2) the separation allows the problem of one type of symmetry to be solved with no need to solve the
other, and (3) by studying both types of symmetry, the total number n of the natural frequencies of vibration
of the cylinder are obtained.

A sequence of values of the non-dimensional parameter O is obtained from the application of the Ritz
method. Different frequencies result from each combination of maximum exponents for a given value of
number of term n. The upper limits I, J, P, and Q of the series are chosen for each value of L/D and n by
following a trial with increasing values of the four indices so that the values of Oj obtained are as low as
possible. The most accurate results achievable are only guaranteed when a substantial variety of sets of
exponents are tested and is thereby a labour-intensive task for the researcher. Although satisfactory results are
obtained with a feasible computational effort, a more effective method would be involving less human effort.
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Therefore, it is highly recommendable to implement a program capable of determining the adequate
maximum exponents with confidence; which is the objective of this work. A program is here developed that
automatically determines the optimum maximum exponents in the series for the displacements. The procedure
applied guarantees the best choice of exponents at any stage of the process. Such a procedure is described in
the following section.

2. The Ritz method: optimization of exponents in the series

In order to shorten the calculation, the exponents must then be sufficiently low, but in order to adapt the
precision to the requirements, the exponents must be sufficiently high. An evident challenge is to find the right
balance.

The Ritz method is optimally applied here to find accurate values of the non-dimensional frequencies by
following an automatic iterative process. The procedure begins with very low values for maximum exponents
I, J, P, Q, by taking the parity of the studied symmetry into account. With these input data, non-dimensional
frequencies O1, O2,y are obtained. The next step is that first maximum exponent I is increased by the possible
minimum amount, and hence the maximum exponents are I+1, J, P, Q. Then, the calculation of the
frequencies gives new values O01, O02,y, which must be lower than the previous ones. The initial value of I is
restored and the exponent J is increased to its next possible amount J0 ¼ J+2, and therefore yielding
maximum exponents I, J0, P, Q and frequencies O001, O002,y. This process is continued with I, J, P0 ¼ P+1, Q

and I, J, P, Q0 ¼ Q+2. The values obtained for the first frequencies are compared O0k, O00k,y. That is, the
frequencies on which more interest is focused are compared, and one chooses the lowest from among them.
These are the best values from which the most effective increase in the exponents is deduced because it
provides the highest decrement of these frequencies. The best set of exponents is fixed.

The process of sequential increase of each one of the four exponents is repeated and the new optimal
exponent is settled. The maximum exponents continue to be increased up to the point of interest. This method
allows several frequencies to be obtained with the required precision and of routine form.

Since in two referred papers [8,9], the first five frequencies are calculated, the criterion of minimizing the sum
of the five lowest frequencies is chosen here and in the cases studied the program stops when n is about 90.

A sample of L/D ¼ 0.3, n ¼ 0.286 is firstly analysed. For symmetric modes the first loop starts from the
lowest combination for the symmetric mode, I ¼ 1, J ¼ 0, P ¼ 0, and Q ¼ 1. The program proceeds with the
loop of four calculations for the four combinations of indices obtained by increasing only one maximum
exponent. These intermediate results are presented in Table 1 for the studied cylinder. All cases have n ¼ 3 and
they have 3 non-null frequencies. In order to continue with the next iteration, the proposed automatic decision
is made. In this table, one can see that the most accurate or minimum sum of the lowest frequencies is obtained
when I ¼ 1, J ¼ 0, P ¼ 1, and Q ¼ 1. Hence, this is the combination selected.

With this selected combination, the second loop starts, increasing now the maximum exponents from the
previous selected values. Table 2 shows the results in the second loop for the case studied after fixing the above
combination. Looking at Table 2, the minimum sum appears when I ¼ 2, J ¼ 0, P ¼ 1, and Q ¼ 1.

Table 3 shows the results for the first 25 loops. The maximum exponents are automatically selected by the
minimum sum of the lowest five frequencies. Values of up to the fifth non-dimensional frequencies are given.
Its last column shows the accumulated time in seconds with a Pentium4 processor.
Table 1

Results of the first loop for symmetric modes for a cylinder of L/D ¼ 0.3, n ¼ 0.286

I J P Q n O1 O2 O3

2 0 0 1 3 3.426837 9.959593 13.119605

1 2 0 1 3 3.715127 10.775174 13.614634

1 0 1 1 3 3.715127 10.775174 11.367276

1 0 0 3 3 3.712840 9.778217 39.717970

The maximum exponent P should be increased in the next loop.
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Table 2

Results of the second loop for the symmetric modes

I J P Q n O1 O2 O3 O4 O5

2 0 1 1 4 3.377318 9.046206 10.976615 14.090759

1 2 1 1 4 3.715127 9.925223 10.775174 14.699087

1 0 2 1 4 3.715127 10.775174 11.291242 13.599183

1 0 1 3 5 3.712840 9.778217 10.465254 39.717970 39.933730

The maximum exponent I should be increased in the next loop.

Table 3

Results automatically selected from the different sequential loops with the criterion minimal sum of 5 first frequencies

I J P Q n O1 O2 O3 O4 O5 t (s)

1 0 0 1 2 3.715127 10.775174 0.1

1 0 1 1 3 3.715127 10.775174 11.367276 0.3

2 0 1 1 4 3.377318 9.046206 10.976615 14.090759 0.6

2 2 1 1 6 3.367326 8.367333 10.479249 13.245898 15.063372 0.8

2 2 2 1 7 3.367247 8.304261 10.259217 11.078892 13.552165 1.2

3 2 2 1 9 3.361496 8.000400 8.779359 10.567395 12.040821 2.2

3 2 2 3 12 3.358660 7.596777 8.041083 9.518541 10.854255 3.5

3 4 2 3 15 3.358623 7.559812 7.762003 9.469062 10.678527 5.8

3 4 3 3 17 3.358609 7.550632 7.693942 9.461278 10.606202 10

4 4 3 3 20 3.358327 7.514999 7.659873 9.398330 10.295691 20

4 4 4 3 22 3.358327 7.486220 7.645685 9.299003 10.257547 34

4 4 5 3 24 3.358326 7.485053 7.643053 9.250771 9.882591 58

5 4 5 3 27 3.358325 7.470496 7.638924 9.204775 9.870014 89

6 4 5 3 30 3.358325 7.470222 7.638664 9.183654 9.791550 133

6 4 5 5 36 3.358324 7.468450 7.625433 9.178569 9.786672 207

6 4 6 5 39 3.358324 7.468152 7.625224 9.171362 9.786203 316

6 4 7 5 42 3.358324 7.468147 7.625118 9.168931 9.773145 499

6 6 7 5 48 3.358324 7.468127 7.622361 9.167615 9.772952 780

7 6 7 5 52 3.358324 7.468076 7.622333 9.166272 9.772735 1172

8 6 7 5 56 3.358324 7.468075 7.622312 9.165966 9.771140 1916

8 6 8 5 59 3.358324 7.468074 7.622285 9.165851 9.771121 3034

8 6 9 5 62 3.358324 7.468074 7.622279 9.165837 9.770973 4624

8 6 9 7 72 3.358324 7.468073 7.622220 9.165792 9.770954 6583

9 6 9 7 76 3.358324 7.468073 7.622213 9.165781 9.770952 94,66

9 8 9 7 85 3.358324 7.468073 7.622203 9.165774 9.770949 16,955
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Fig. 1 shows the values of the frequencies in terms of the number of coefficients used in the calculation. It
can be observed that the lowest frequencies converge quickly to an almost stationary value even for a small
number of coefficients. However, the high frequencies converge slowly.

3. Results of numerical calculation

The method described in the previous section is applied to three cylinders whose slenderness ratios are 0.3,
0.853145, and 3.2, respectively. This selection has been done because the cylinder of ratio 0.3 can be
assimilated to a disc and the cylinder of ratio 3.2 can be considered a long rod. Value 0.853145 corresponds to
the so-called [11] universal slenderness ratio because a cylinder with this aspect ratio has its lowest symmetric
natural frequency independent of Poisson’s ratio and that slenderness can be seen as a boundary between the
class of short cylinders and the class of long cylinders. The selected values of Poisson’s ratio are 0, 0.286, and
0.49999 for each of the aforesaid ratios. These values of n have been selected because the first and last values
are extreme values in ordinary materials and the second value corresponds to the kind of steel used in the
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Fig. 1. Convergence of the first five lowest frequencies for the symmetric modes for a cylinder with aspect ratio L/D ¼ 0.3 and Poisson’s

ratio n ¼ 0.286.

Table 4

The five lowest frequencies of the symmetric modes of nine test cases

L/D n I J P Q n O1 O2 O3 O4 O5 t (s)

0.3 0 9 8 9 7 85 2.603827 6.501539 7.404805 7.428515 7.539799 11,592

0.3 0.286 9 8 9 7 85 3.358324 7.468073 7.622203 9.165774 9.770949 16,955

0.3 0.49999 5 18 3 19 90 3.975391 7.521591 8.739191 10.337127 12.609593 9060

0.853145 0 7 10 6 9 77 2.603826 2.603827 2.603827 4.664227 5.389498 10,763

0.853145 0.286 7 10 6 9 77 2.603827 3.213123 4.073039 5.228671 5.969739 57,774

0.853145 0.49999 9 8 8 7 81 2.603827 3.756643 4.982324 6.427426 7.671722 4216

3.2 0 5 14 6 15 96 0.694200 2.082601 2.365269 2.558300 2.603827 11,263

3.2 0.286 5 14 5 15 88 0.783195 2.209040 2.915038 3.071125 3.591413 29,915

3.2 0.49999 12 6 11 5 84 0.837488 2.263614 3.322413 4.106648 4.743365 1951
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laboratory in this work. The theory and the criterion described above have been applied to these nine test
samples.

Table 4 shows the resulting non-dimensional frequencies of the numerical calculation for symmetric modes
of the nine samples. The calculation has been initiated with the lower maximum exponents, in order not to
neglect any mode of vibration and to choose the best direction at any stage of the process. Note that the
number of maximum terms reached, n, is of the same order of magnitude in all the cases due to the limitations
of the calculation program. It can also be seen, by simple inspection of Table 4, that: (1) For aspect ratio
0.853145, corresponding to the first universal point, frequency O1 is independent of Poisson’s ratio. (2) For the
universal slenderness and null Poisson’s ratio the three lower frequencies are equal, which proves the
multiplicity of the modes. (3) Frequency is an increasing function of n in the other cases. (4) The difference in
the values of the maximum exponents is significant. In particular, maximum exponents I and J corresponding
to the series U, are different to each other as also happens to exponents P and Q.

The method of optimization for the nine test cases has been repeated for the antisymmetric modes. Table 5
gives the values of the five lowest frequencies of the nine test samples.

4. Experimental results

The procedure for generating and detecting the vibration of a sample is described in a previous paper [12].
A simple pendulum is used to apply an axial impact to the centre of one of the ends of the cylinder.
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Table 5

The five lowest frequencies of the anti-symmetric modes

L/D n I J P Q n O1 O2 O3 O4 O5 t (s)

0.3 0 9 7 9 6 76 1.503205 4.324353 6.489739 8.128924 9.589480 8389

0.3 0.286 9 7 9 6 76 1.875431 4.859977 6.829216 8.724917 10.155172 9863

0.3 0.49999 10 5 10 4 63 2.236864 5.340333 7.119669 9.194226 10.608075 7268

0.853145 0 7 9 8 10 89 2.241321 3.541322 4.530877 5.207653 5.860811 23,812

0.853145 0.286 7 9 7 10 83 2.768114 3.828274 5.043911 6.049151 6.520905 18,431

0.853145 0.49999 10 5 9 6 70 3.141307 3.957009 5.589955 6.222026 6.862911 14,798

3.2 0 5 15 5 14 88 1.388401 2.363052 2.579648 2.632320 2.776802 19,529

3.2 0.286 4 15 5 14 86 1.537746 2.709765 2.921827 3.368714 3.608065 11,115

3.2 0.49999 9 7 8 8 81 1.600620 2.717486 3.326428 3.871972 3.960011 6579

Table 6

Calculated (fc) and experimental (fe) frequencies and their differences (fc-fe) for the steel cylinders

L/D fc (Hz) fe (Hz) fc�fe (%)

0.30 37,477 37,500 �0.23

67,110 67,025 0.85

97,118 97,150 �0.32

0.85 52,033 51,725 3.08

55,316 55,325 �0.09

64,209 64,150 0.59

3.20 15,651 15,550 1.01

30,729 30,510 2.16

44,144 43,780 3.64
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The cylinder is then left to vibrate almost freely. A heterodyne optical interferometer [13] is used to detect the
resulting vibration at the centre of the opposite end. The normal component of the displacement is here
detected. The Fourier transform of the detected signal gives the natural frequencies.

For a specific cylinder, the natural frequencies in the spectrum are denoted in ascending order by f1, f2,

f3,y. Proportionality of O and f is the result of the definition of non-dimensional frequency, Eq. (3).
The three cylinder tested are of stainless steel, with a diameter D ¼ 49.90mm, and density r ¼ 7889 kg/m3.

Its elastic constants are n ¼ 0.286 and G ¼ 77.42GPa, both calculated from the measurement of the P- and
S-wave velocities.

Table 6 shows L/D of each cylinder and the respective lowest experimental frequencies fe. The resolution is
25Hz for the two first samples and 10Hz for the third one.

5. Comparison of results

5.1. Comparison of computed results versus experimental ones

From Tables 4 and 5, it is deduced that for the steel test sample of aspect ratio 0.300, the three lowest
non-dimensional frequencies are: O1 (antisymmetric) ¼ 1.875431, O1 (symmetric) ¼ 3.358324, and O2

(antisymmetric) ¼ 4.859977. Considering the diameter, the density, and the shear modulus, Eq. (2) gives
the respective frequencies: f1 ¼ 37 477Hz, f2 ¼ 67 110Hz, and f3 ¼ 97 118Hz.

These numerically calculated values appear in the second column of Table 6, labelled fc. In the fourth
column the differences between the numerical and the experimental values are shown, expressed as a
percentage.

The calculated and experimental values of frequencies for the samples of L/D ¼ 0.85 and 3.2 are also shown
in Table 6.
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From Table 6 it may be deduced that:
(a)
Tab

Calc

I

1

1

1

1

2

2

2

2

3

3

3

3

3

4

5

5

5

5

5

6

6

7

7

7

The values of the calculated frequencies are close to those of the experimental ones; the differences ranging
from �0.09% to 3.64%, which indicates a close agreement between the theory and experiments. Therefore
the two methodologies are adequate.
(b)
 Some differences of frequencies are negative. This fact seems to be paradoxical. In effect, the Ritz method
always gives frequencies higher than the exact values. Some simple explanations of that result can be given:
(1) The exact values of frequencies can never be known, therefore it is not possible to confirm if the
computed values are higher. (2) The elastic constants are measured with certain uncertainties, therefore,
Poisson’s ratio taken as datum to calculate the non-dimensional frequencies is affected by error.
Moreover, the value of the shear modulus introduced as datum to calculate the frequencies is not precise.
(3) All the experimental set-up is affected by systematic and random uncertainties.
5.2. Comparison with other computed results

In order to compare the results attained by application of the method of optimization proposed with those
obtained by Leissa and So [8], the non-dimensional frequencies for an L/D ¼ 1 and n ¼ 0.3 cylinder have been
calculated. The results appear in Table 7. From the comparison of the two tables is deduced that:
(a)
 Table 7 includes for n the interval (3–97) whereas it is (8–96) in Table 1 of Leissa and So. The final results
from both tables are equal for six significant figures except for the fifth frequency, which is 5.59265 in
Table 7 whereas such a frequency is 5.59266 in the table of Leissa and So. In the aforesaid tables, the first
frequency converges to six significant figures with the smallest determinant size (order 40 in both cases).
However, in Table 7, determinants of order 55 and 71 are required to obtain six-figure convergence for the
le 7

ulated non-dimensional symmetric frequencies for a free cylinder of L/D ¼ 1 and n ¼ 0.3

J P Q n O1 O2 O3 O4 O5

1 1 0 3 2.54950976 4.89897949 5.33853913

3 1 0 4 2.54950976 3.99009196 4.89897949 6.89776530

3 2 0 5 2.54950976 3.94526099 4.89897949 6.16068010 9.61670091

5 2 0 6 2.54950976 3.91563044 4.89897949 5.79684754 8.25547191

5 2 0 9 2.51896754 3.44499774 4.43991436 5.56087175 7.95091844

5 2 2 12 2.32866414 3.10260824 4.05716552 5.41928467 7.37403035

5 2 4 15 2.32797139 3.10105004 4.02991165 5.22118334 6.94998267

7 2 4 17 2.32796997 3.10103481 4.02310791 5.05490901 6.30318310

7 2 4 21 2.32679925 3.10019831 4.01231923 4.99339282 5.92335230

7 3 4 24 2.32633594 3.06900845 3.99387981 4.94528886 5.89241946

7 4 4 27 2.32633004 3.06893946 3.99305815 4.93528601 5.69795413

7 4 6 32 2.32632976 3.06892531 3.99181182 4.90959263 5.64378820

9 4 6 35 2.32632974 3.06891208 3.99167163 4.90171631 5.61655615

9 4 6 40 2.32630255 3.06720301 3.98951405 4.89815222 5.60823529

9 4 6 45 2.32630237 3.06719723 3.98944400 4.89721246 5.59955553

9 4 8 50 2.32630236 3.06719607 3.98943271 4.89658116 5.59633658

9 5 8 55 2.32630223 3.06714254 3.98929939 4.8962713 5.59578791

9 6 8 60 2.32630222 3.06714183 3.98929598 4.89617629 5.59367125

11 6 8 65 2.32630222 3.06714165 3.98929569 4.89607802 5.59279194

11 6 8 71 2.32630222 3.06714035 3.98928820 4.89604537 5.59276086

11 6 10 78 2.32630222 3.06714023 3.98928801 4.89603857 5.59271366

11 6 10 84 2.32630222 3.06714009 3.98928774 4.89603703 5.59266445

13 6 10 91 2.32630222 3.06714008 3.98928768 4.89603551 5.59265638

13 7 10 97 2.32630222 3.06713998 3.98928734 4.89603087 5.59265247
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Table 8

Sum of the five calculated non-dimensional symmetric frequencies

n I J P Q TR TZ SLS I J P Q SOp

12 3 2 2 3 3 2 23.40333 2 4 2 3 22.28175

24 3 6 2 7 3 4 20.25094 3 6 3 5 20.22693

32 4 6 3 7 4 4 20.10651 3 6 4 7 19.94045

40 5 6 4 7 5 4 19.91512 4 8 4 7 19.88941

60 5 10 4 11 5 6 19.87479 5 8 6 9 19.87259

84 7 10 6 11 7 6 19.87143 7 10 6 11 19.87143
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second and third frequencies, respectively, while in Table 1 [8] such a convergence is achieved with
determinant orders of 72. The value of the fourth frequency is equal in both works.
(b)
 With the aim of comparing the first five frequencies simultaneously, Table 8 has been constructed, in which
the lowest sums of the first five frequencies of Leissa and So, SLS, are shown, together with the sums SOp

obtained from Table 7, for those calculations with same number of terms (n ¼ 12, 24, 32, 40, 60, 84). It can
be seen that all the sums of the optimization method are less than those in Ref. [8], except for the last sum,
which is equal. Therefore, the optimization method proposed requires either smaller or equal determinant
sizes to obtain the same degree of convergence. The equality of sum in the last row does not mean equality
in the effectiveness of the methods, in effect, since the four maximum exponents are equal, then the results
must necessarily be equal. In Ref. [8], different combinations of exponents are tested, the convergence
scheme is repeated with increasing upper limits of the series, the results of the trial are shown in a table; an
analysis of the table permits the determination of the lowest frequency obtained for a mode with the
smallest determinant size. On the other hand, the optimum procedure proposed makes use of a computer
to automatically calculate the best choice of exponents. As a result of the calculations, for a given
determinant size, the computer program gives the best combination of the upper limits I, J, P, Q.
(c)
 In the sixth and seventh columns of Table 8, the amounts TR and TZ appear. TR indicates the number of
terms of the series U where r appears, which agrees with the number of terms in r of the series of W. TZ

indicates the number of terms in z that appear in each series U and W. The supposition that the number of
terms in r is equal for U and W and that the number of terms in z for U and W is equal, is not sufficiently
justified, although it has been used with some frequency [8,9]. Better options appear in Table 8.
(d)
 The hypothesis [8] that the best choice of number of terms in the axial direction is equal to the number of
terms in the radial direction multiplied by the length-to-diameter ratio is not consistent with Table 8.
When continuing Table 7 up to n ¼ 112, the best values of frequencies are for the maximum exponents
{7, 12, 9, 13}, which are in disagreement with the aforementioned hypothesis.
6. Conclusions

An intuitive procedure to select the number of terms in the series solution to calculate axisymmetric natural
vibration frequencies of a cylinder is presented. The procedure can be used in any problem where it is
necessary to determine the optimum number of terms in a series of two independent functions that can be
expressed in terms of two independent variables.

The Ritz method is optimized by automatically determining the upper limits of the exponents of the series
used as displacements functions. The proposed procedure yields the best combination of exponents for a
determinant size. One advantage of the proposed procedure is that no tables are needed to compare the results
in order to seek the best solution. The computer program developed chooses the best combination of
exponents at any stage.

For large determinant sizes, the proposed technique yields similar results to those obtained by other
authors for six-figure convergence; because when many polynomials terms are taken convergence is
guaranteed. However, finding the upper limits in the series is a time-consuming task for the researcher.
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The optimization procedure is proved to yield either more or equal accurate frequencies for equal number of
terms in the series.

The proposed method is an improvement on the methods to calculate the natural frequencies in a more
straightforward way. The calculated frequencies agree with the experimental ones better than others calculated
values.
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